An Autonomous Wireless Sensor Node With Asynchronous ECG Monitoring in 0.18 µm CMOS

نویسندگان

  • André Mansano
  • Yongjia Li
  • Sumit Bagga
  • Wouter A. Serdijn
چکیده

The design of a 13.56 MHz/402 MHz autonomous wireless sensor node with asynchronous ECG monitoring for near field communication is presented. The sensor node consists of an RF energy harvester (RFEH), a power management unit, an ECG readout, a data encoder and an RF backscattering transmitter. The energy harvester supplies the system with 1.25 V and offers a power conversion efficiency of 19% from a -13 dBm RF source at 13.56 MHz. The power management unit regulates the output voltage of the RFEH to supply the ECG readout with VECG = 0.95 V and the data encoder with VDE = 0.65 V . The ECG readout comprises an analog front-end (low noise amplifier and programmable voltage to current converter) and an asynchronous level crossing ADC with 8 bits resolution. The ADC output is encoded by a pulse generator that drives a backscattering transmitter at 402 MHz. The total power consumption of the sensor node circuitry is 9.7 μ W for a data rate of 90 kb/s and a heart rate of 70 bpm. The chip has been designed in a 0.18 μm CMOS process and shows superior RF input power sensitivity and lower power consumption when compared to previous works.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Personal Health Monitoring System Using Wireless Sensor Network

The current paper presents low-power analog integrated circuits (ICs) for wireless electrocardiogram (ECG) detection in personal health monitoring. Considering the power-efficient communication in the body sensor network (BSN), the required low-power analog ICs are developed for a healthcare system through miniaturization and system integration. The proposed system comprises the design and impl...

متن کامل

Coverage Improvement In Wireless Sensor Networks Based On Fuzzy-Logic And Genetic Algorithm

Wireless sensor networks have been widely considered as one of the most important 21th century technologies and are used in so many applications such as environmental monitoring, security and surveillance. Wireless sensor networks are used when it is not possible or convenient to supply signaling or power supply wires to a wireless sensor node. The wireless sensor node must be battery powered.C...

متن کامل

A 910MHz Injection Locked BFSK Transceiver for Wireless Body Sensor Network Using Colpitts Oscillator

A 910MHz high efficiency RF transceiver for Wireless Body Area Network in medical application is presented in this paper. High energy efficiency transmitter and receiver architectures are proposed. In wireless body sensor network, the transmitter must have higher efficiency compared with the receiver because a large amount of data is sent from sensor node to receiver of the base station and sma...

متن کامل

An Artificial Bee Colony Inspired Clustering Solution to Prolong Lifetime of Wireless Sensor Networks

It is very difficult and expensive to replace sensor node battery in wireless sensor network in many critical conditions such as bridge supervising, resource exploration in hostile locations, and wildlife safety, etc. The natural choice in such situations is to maximize network lifetime. One such approach is to divide the sensing area of wireless sensor network into clusters to achieve high ene...

متن کامل

Gravitational Search Algorithm to Solve the K-of-N Lifetime Problem in Two-Tiered WSNs

Wireless Sensor Networks (WSNs) are networks of autonomous nodes used for monitoring an environment. In designing WSNs, one of the main issues is limited energy source for each sensor node. Hence, offering ways to optimize energy consumption in WSNs which eventually increases the network lifetime is strongly felt. Gravitational Search Algorithm (GSA) is a novel stochastic population-based meta-...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • IEEE transactions on biomedical circuits and systems

دوره 10 3  شماره 

صفحات  -

تاریخ انتشار 2016